Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 200

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Replacement of incinerator adopted to Plutonium Waste Treatment Facility

Yamashita, Kiyoto; Maki, Shota; Yokosuka, Kazuhiro; Fukui, Masahiro; Iemura, Keisuke

JAEA-Technology 2023-023, 97 Pages, 2024/03

JAEA-Technology-2023-023.pdf:8.21MB

The incinerator adopted to incineration room, Plutonium Waste Treatment Facility had been demonstrated since 2002 for developing technologies to reduce the volume of fire-resistant wastes such as vinyl chloride (represented by Polyvinyl chloride bags) and rubber gloves for Radio Isotope among radioactive solid wastes generated by the production of mixed oxide fuels. The incinerator, cooling tower, and processing pipes were replaced with a suspension period from 2018 to 2022, which fireproof materials on the inner wall of the incinerator was cracked and grown caused by hydrogen chloride generated when disposing of fire-resistant wastes. This facility consists of the waste feed process, the incineration process, the waste gas treatment process, and the ash removal process. We replaced the cooling tower in the waste gas treatment process from March 2020 to March 2021, and the incinerator in the incineration process from January 2021 to February 2022. In addition, samples were collected from the incinerator and the cooling tower during the removing and dismantling of the replaced devices, observed by Scanning Electron Microscope and X-ray microanalyzer, and analyzed by X-ray diffraction to investigate the corrosion and deterioration of them. This report describes the method of setting up the green house, the procedure for replacing them, and the results from analysis in corrosion and deterioration of the cooling tower and incinerator.

Journal Articles

Development of transient behavior analysis code for metal fuel fast reactor during initiating phase of core disruptive accident

Ota, Hirokazu*; Ogata, Takanari*; Yamano, Hidemasa; Futagami, Satoshi; Shimada, Sadae*; Yamada, Yumi*

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 8 Pages, 2023/05

JAEA Reports

Consideration on roles and relationship between observations/measurements and model predictions for environmental consequence assessments for nuclear facilities

Togawa, Orihiko; Okura, Takehisa; Kimura, Masanori

JAEA-Review 2022-049, 76 Pages, 2023/01

JAEA-Review-2022-049.pdf:3.74MB

Before construction and after operation of nuclear facilities, environmental consequence assessments are conducted for normal operation and an emergency. These assessments mainly aim at confirming safety for the public around the facilities and producing relief for them. Environmental consequence assessments are carried out using observations/ measurements by environmental monitoring and/or model predictions by calculation models, sometimes using either of which and at other times using both them, according to the situations and necessities. First, this report investigates methods, roles, merits/demerits and relationship between observations/measurements and model predictions which are used for environmental consequence assessments of nuclear facilities, especially holding up a spent nuclear fuel reprocessing plant at Rokkasho, Aomori as an example. Next, it explains representative examples of utilization of data on observations/measurements and results on model predictions, and considers points of attention at using them. Finally, the report describes future direction, for example, improvements of observations/measurements and model predictions, and fusion of both them.

Journal Articles

A Plan of Proton Irradiation Facility at J-PARC and possibilities of application to nuclear data research

Maekawa, Fujio

JAEA-Conf 2022-001, p.7 - 13, 2022/11

The partitioning and transmutation (P-T) technology has promising potential for volume reduction and mitigation of degree of harmfulness of high-level radioactive waste. JAEA is developing the P-T technology combined with accelerator driven systems (ADS). One of critical issues affecting the feasibility of ADS is the proton beam window (PBW) which functions as a boundary between the accelerator and the sub-critical reactor core. The PBW is damaged by a high-intensity proton beam and spallation neutrons produced in the target, and also by flowing high-temperature liquid lead bismuth eutectic alloy which is corrosive to steel materials. To study the materials damage under the ADS environment, J-PARC is proposing a plan of proton irradiation facility which equips with a liquid lead-bismuth spallation target bombarded by a 400 MeV - 250 kW proton beam. The facility is also open for versatile purposes such as soft error testing of semi-conductor devises, RI production, materials irradiation for fission and fusion reactors, and so on. Application to nuclear data research with using the proton beam and spallation neutrons is also one of such versatile purposes, and we welcome unique ideas from the nuclear data community.

Journal Articles

Experimental and analytical investigations on aerosol washout in a large vessel with high spray coverage ratio simulating PWR containment spray

Sun, Haomin; Leblois, Y.*; Gelain, T.*; Porcheron, E.*

Journal of Nuclear Science and Technology, 59(11), p.1356 - 1369, 2022/11

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

In severe accident scenarios of PWR, containment spray can be employed to washout the aerosol of radioactive materials, retaining them in the containment. Therefore, it is crucial to correctly predict the washout efficiency for safety assessment. For a PWR, a high spray coverage ratio ($$>$$ 84%-95%) is required. However, experimental studies on the washout with such a high coverage ratio in a large vessel are quite limited. To understand such a washout phenomenon for model development, aerosol washout experiments are performed in a large vessel with not only aerosol measurements but also spray droplet characterizations. The spray coverage ratios are experimentally confirmed to be compatible with a real PWR. The washout features are investigated in detail. The model in MELCOR is examined using the measured aerosol removal rate, showing the removal rate tendency against particle diameters being reproduced. Although a significant underestimation occurs for large particles, a satisfactory agreement is obtained for smaller ones ($$<$$0.52 $$mu$$m in diameter) corresponding to the minimum removal rate and around.

Journal Articles

Overview of event progression of evaporation to dryness caused by boiling of high-level liquid waste in Reprocessing Facilities

Yamaguchi, Akinori*; Yokotsuka, Muneyuki*; Furuta, Masayo*; Kubota, Kazuo*; Fujine, Sachio*; Mori, Kenji*; Yoshida, Naoki; Amano, Yuki; Abe, Hitoshi

Nihon Genshiryoku Gakkai Wabun Rombunshi (Internet), 21(4), p.173 - 182, 2022/09

Risk information obtained from probabilistic risk assessment (PRA) can be used to evaluate the effectiveness of measures against severe accidents in nuclear facilities. The PRA methods used for reprocessing facilities are considered immature compared to those for nuclear power plants, and to make the methods mature, reducing the uncertainty of accident scenarios becomes crucial. In this paper, we summarized the results of literature survey on the event progression of evaporation to dryness caused by boiling of high-level liquid waste (HLLW) which is a severe accident in reprocessing facilities and migration behavior of associated radioactive materials. Since one of the important characteristics of Ru is its tendency to form volatile compounds over the course of the event progression, the migration behavior of Ru is categorized into four stages based on temperature. Although no Ru has been released in the waste in the high temperature region, other volatile elements such as Cs could be released. Sufficient experimental data, however, have not been obtained yet. It is, therefore, necessary to further clarify the migration behavior of radioactive materials that predominantly depends on temperature in this region.

JAEA Reports

Continuous improvement activities on nuclear facility maintenance in Nuclear Science Research Institute of Japan Atomic Energy Agency in 2021

Task Force on Maintenance Optimization of Nuclear Facilities

JAEA-Technology 2022-006, 80 Pages, 2022/06

JAEA-Technology-2022-006.pdf:4.24MB

The Task force on maintenance optimization of nuclear facilities was organized in the Nuclear Science Research Institute (NSRI) of Japan Atomic Energy Agency (JAEA) since November 2020, in order to adequately respond to "the New nuclear regulatory inspection system since FY 2020" and to continuously improve the facility maintenance activities. In 2021, the task force has studied (1) optimization of the importance classification on maintenance and inspection of nuclear facilities, and (2) improvement in setting and evaluation of the performance indicators on safety, maintenance and quality management activities, considering "the Graded approach" that is one of the basic methodologies in the new nuclear regulatory inspection system. Each nuclear facility (research reactors, nuclear fuel material usage facilities, others) in the NSRI will steadily improve their respective safety, maintenance and quality management activities, referring the review results suggested by the task force.

Journal Articles

R&D on Accelerator Driven Nuclear Transmutation System (ADS) at J-PARC, 2; Transmutation Experimental Facility at J-PARC

Maekawa, Fujio; Takei, Hayanori

Purazuma, Kaku Yugo Gakkai-Shi, 98(5), p.206 - 210, 2022/05

In developing an accelerator-driven nuclear transmutation system (ADS), it is necessary to solve technical issues related to proton beams, such as the development of materials that can withstand high-intensity proton beams and the characterization of subcritical cores driven by proton beams. Therefore, at the high-intensity proton accelerator facility J-PARC, a transmutation experimental facility that actually conducts various tests using a high-intensity proton beam is being planned. This paper introduces the outline and future direction of the transmutation experimental facility.

JAEA Reports

Development of the unified cross-section set ADJ2017R

Yokoyama, Kenji; Maruyama, Shuhei; Taninaka, Hiroshi; Oki, Shigeo

JAEA-Data/Code 2021-019, 115 Pages, 2022/03

JAEA-Data-Code-2021-019.pdf:6.21MB
JAEA-Data-Code-2021-019-appendix(CD-ROM).zip:435.94MB

In JAEA, several versions of unified cross-section set for fast reactors have been developed so far; we have developed a new unified cross-section set ADJ2017R, which is an improved version of the unified cross-section setADJ2017 for fast reactors. The unified cross-section set is used for reflecting information of C/E values (analysis / experiment values) obtained by integral experiment analyses in reactor core design via the cross-section adjustment methodology; the values are stored in the standard database for FBR core design. In the methodology, the cross-section set is adjusted by integrating the information such as uncertainty (covariance) of nuclear data, uncertainty of integral experiment / analysis, sensitivity of integral experiment with respect to nuclear data. ADJ2017R basically has the same performance as ADJ2017, but we conducted an additional investigation on ADJ2017 and revised the following two points. The first is to unify the evaluation method of the correlation coefficient of uncertainty caused by experiments (hereinafter referred to as the experimental correlation coefficient). Because it was found that the common uncertainty used in the evaluation of the experimental correlation coefficient was evaluated by two different methods, the experimental correlation coefficients were revised for all experimental data, and the evaluation method was unified. The second is the review of the integral experiment data used for the cross-section adjustment calculation. It was found that one of the experimental values of composition ratio after irradiation of the Am-243 sample has a problem in uncertainty evaluation because its experimental uncertainty is extremely small compared to the others. The cross-section adjustment calculation was, therefore, redone by excluding the experimental value. In the creation of ADJ2017, a total of 719 data sets were analyzed and evaluated, and eventually adopted 620 integral experimental data sets. In contrast, a total of 61

JAEA Reports

Investigation on soundness of JMTR Facility piping by ultrasonic thickness measurement

Omori, Takazumi; Otsuka, Kaoru; Endo, Yasuichi; Takeuchi, Tomoaki; Ide, Hiroshi

JAEA-Review 2021-015, 57 Pages, 2021/11

JAEA-Review-2021-015.pdf:6.3MB

The JMTR reactor facility was selected as a decommissioning one in the Medium/Long-Term Management Plan of JAEA Facilities formulated on April 1, 2017. Therefore, the decommissioning plan was submitted to Nuclear Regulation Authority on September 18, 2019, and the approval was obtained on March 17, 2021 after two amendments. Currently, preparations for decommissioning are underway. The JMTR reactor facility has been aged for more than 50 years since the first criticality in March 1968. However, some of the water piping systems has not been updated since its construction, and there is a possibility of pipe wall thinning due to corrosion, etc. Therefore, the integrity of the water piping was investigated for the facilities that circulate cooling water and pump radioactive liquid waste. In this investigation, the main circulation system of the reactor primary cooling system, the pool canal circulation system, the CF pool circulation system, the drainage system of the liquid waste disposal system, and the hydraulic rabbit irradiation system of the main experimental facility were measured for the pipe wall thickness using the Ultrasonic Thickness Measurement (UTM) method. These values satisfied the technical standards for research and test reactor facilities. No loss of integrity is expected to occur during the upcoming decommissioning period. In the future, we will periodically confirm that there is no wall thinning in the piping of the cooling water circulation and the water transmission system during the decommissioning period by using this result as basic data.

JAEA Reports

Calculation of the amount of leaching water from concrete-pit facilities under various facility design conditions

Nagao, Rina; Namekawa, Maki*; Totsuka, Masayoshi*; Nakata, Hisakazu; Sakai, Akihiro

JAEA-Technology 2021-009, 139 Pages, 2021/06

JAEA-Technology-2021-009.pdf:13.96MB

Japan Atomic Energy Agency is the implementing body of the near surface disposal of low-level radioactive waste (LLW) generated from research facilities and other facilities. Concrete-pit disposal are considered as a method of disposing of the LLW. Since the concrete-pits are placed at deeper position than the groundwater level, we need to consider that radionuclides might migrate with the flow of groundwater. Accordingly, in order to explain the safety of the concrete-pit disposal facility, it is necessary to investigate the flow of groundwater and the volumetric flow rate of leaching water from the facility. Therefore, in this report, sensitivity analysis of the volumetric flow rate of leaching water from concrete-pit was carried out by varying the permeability of cover-soil filled with in outside of the lateral sides of the bentonite mixed soil (BMS) and the conditions of the BMS on the upper part of the concrete-pits. As a result of the analysis, when the BMS is normal condition, the volumetric flow rate of leaching water from the concrete-pits is reduced by lowering permeability of the lateral cover-soil. However, in the case of occurring the deterioration of the function of BMS on the upper part of the concrete-pit, significant reduction of the volumetric flow rate of leaching water is not seen even if the permeability of the lateral cover-soil is lowered. Therefore, taking into consideration the possibility of the deterioration of the function of BMS on the upper part of the concrete-pit, it is necessary to consider that cover-soil with low permeability is equipped on the upper part of the BMS.

JAEA Reports

Interim activity status report of "the group for investigation of reasonable safety assurance based on graded approach" (from September, 2019 to September, 2020)

Yonomoto, Taisuke; Nakashima, Hiroshi*; Sono, Hiroki; Kishimoto, Katsumi; Izawa, Kazuhiko; Kinase, Masami; Osa, Akihiko; Ogawa, Kazuhiko; Horiguchi, Hironori; Inoi, Hiroyuki; et al.

JAEA-Review 2020-056, 51 Pages, 2021/03

JAEA-Review-2020-056.pdf:3.26MB

A group named as "The group for investigation of reasonable safety assurance based on graded approach", which consists of about 10 staffs from Sector of Nuclear Science Research, Safety and Nuclear Security Administration Department, departments for management of nuclear facility, Sector of Nuclear Safety Research and Emergency Preparedness, aims to realize effective graded approach (GA) about management of facilities and regulatory compliance of JAEA. The group started its activities in September, 2019 and has had discussions through 10 meetings and email communications. In the meetings, basic ideas of GA, status of compliance with new regulatory standards at each facility, new inspection system, etc were discussed, while individual investigation at each facility were shared among the members. This report is compiled with expectation that it will help promote rational and effective safety management based on GA by sharing contents of the activity widely inside and outside JAEA.

Journal Articles

The Analytical study of inventories and physicochemical configuration of spallation products produced in Lead-Bismuth Eutectic of Accelerator Driven System

Miyahara, Shinya*; Ohdaira, Naoya*; Arita, Yuji*; Maekawa, Fujio; Matsuda, Hiroki; Sasa, Toshinobu; Meigo, Shinichiro

Nuclear Engineering and Design, 352, p.110192_1 - 110192_8, 2019/10

 Times Cited Count:5 Percentile:48.18(Nuclear Science & Technology)

Lead-Bismuth Eutectic (LBE) is used as a spallation neutron target and coolant materials of Accelerator Driven System (ADS), and many kinds of elements are produced as spallation products. It is important to evaluate the release and transport behavior of the spallation products in the LBE. The inventories and the physicochemical composition of the spallation products produced in LBE have been investigated for an LBE loop in the ADS Target Test Facility (TEF-T) in J-PARC. The inventories of the spallation products in the LBE were estimated using the PHITS code. The physicochemical composition of the spallation products in the LBE was calculated using the Thermo-Calc code under the conditions of the operation temperatures of LBE from 350$$^{circ}$$C to 500$$^{circ}$$C and the oxygen concentrations in LBE from 10 ppb to 1 ppm. The calculation showed that the 5 elements of Rb, Tl, Tc, Os, Ir, Pt, Au and Hg were soluble in LBE under the all given conditions and any kinds of compound were not formed in LBE. It was suggested that the oxides of Ce, Sr, Zr and Y were stable as CeO$$_{2}$$, SrO, ZrO$$_{2}$$ and Y$$_{2}$$O$$_{3}$$ in the LBE.

Journal Articles

Treatment technology of highly radioactive solid waste generated by experimental tests and sample analysis in reprocessing facilities

Goto, Yuichi; Inada, Satoshi; Kuno, Takehiko; Mori, Eito*

Nihon Hozen Gakkai Dai-16-Kai Gakujutsu Koenkai Yoshishu, p.221 - 224, 2019/07

Test equipment, containers, and analytical wastes, generated by experiments using spent fuel pieces in hot cell of Operation Testing Laboratory and by analysis of highly active liquid wastes in hot analytical cell line of Tokai Reprocessing Plant, are treated as highly radioactive solid wastes. These wastes are stored in specific shielded containers called waste cask and then transport to the storage facility. The treatment of these highly radioactive solid wastes have been carried out for 40 years with upgrading waste taking out system and transportation device. As a results, automation of several procedures have been achieved utilizing conventional equipment, and work efficiency and safety have been improved.

JAEA Reports

Activity median aerodynamic diameter relating to contamination at Plutonium Fuel Research Facility in Oarai Research and Development Center; Particle size analysis for plutonium particles using imaging plate

Takasaki, Koji; Yasumune, Takashi; Hashimoto, Makoto; Maeda, Koji; Kato, Masato; Yoshizawa, Michio; Momose, Takumaro

JAEA-Review 2019-003, 48 Pages, 2019/03

JAEA-Review-2019-003.pdf:3.81MB

June 6, 2017, at Plutonium Fuel Research Facility in Oarai Research and Development Center of JAEA, when five workers were inspecting storage containers containing plutonium and uranium, resin bags in a storage container ruptured, and radioactive dust spread. Though they were wearing a half face mask respirator, they inhaled radioactive materials. In the evaluation of the internal exposure dose, the aerodynamic radioactive median diameter (AMAD) is an important parameter. We measured 14 smear samples and a dust filter paper with imaging plates, and estimated the AMAD by image analysis. As a result of estimating the AMAD, from the 14 smear samples, the AMADs are 4.3 to 11 $$mu$$m or more in the case of nitrate plutonium, and the AMADs are 5.6 to 14 $$mu$$m or more in the case of the oxidized plutonium. Also, from the dust filter paper, the AMAD is 3.0 $$mu$$m or more in the case of nitrate plutonium, and the AMAD is 3.9 $$mu$$m or more in the case of the oxidized plutonium.

Journal Articles

Waste management in a Hot Laboratory of Japan Atomic Energy Agency, 1; Overview and activities in chemical processing facility

Nomura, Kazunori; Ogi, Hiromichi*; Nakahara, Masaumi; Watanabe, So; Shibata, Atsuhiro

International Journal of Nuclear and Quantum Engineering (Internet), 13(5), p.209 - 212, 2019/00

JAEA Reports

Measurement experiment of oxygen concentration in liquid lead-bismuth eutectic; Basic Tests and estimation of gamma-ray irradiation effect

Sugawara, Takanori; Kita, Satoshi*; Yoshimoto, Hidemitsu*; Okubo, Nariaki

JAEA-Technology 2018-008, 26 Pages, 2018/09

JAEA-Technology-2018-008.pdf:10.35MB

The oxygen sensors to measure the oxygen concentration in liquid LBE (lead-bismuth eutectic) were fabricated and tested for future use in LBE-cooled ADS (accelerator-driven system) or LBE test loops. The following tests were performed; estimation of catalyst application range, freeze seal structure and estimation of gamma-ray irradiation effect. For the estimation of the catalyst application range, it was confirmed that the measurement accuracy became worse in low LBE temperature as the application range became small. For the freeze seal structure, we realized the structure to prevent the LBE leakage with 0.5 MPa pressure condition. For the estimation of gamma-ray irradiation effect, the ex-situ test was carried out and it was observed that there was little effect by 4 MGy gamma-ray irradiation.

Journal Articles

Uncertainty analysis of ROSA/LSTF test by RELAP5 code and PKL counterpart test concerning PWR hot leg break LOCAs

Takeda, Takeshi; Otsu, Iwao

Nuclear Engineering and Technology, 50(6), p.829 - 841, 2018/08

 Times Cited Count:14 Percentile:79.14(Nuclear Science & Technology)

Journal Articles

Evaluation of heat removal during the failure of the core cooling for new critical assembly

Eguchi, Yuta; Sugawara, Takanori; Nishihara, Kenji; Tazawa, Yujiro; Tsujimoto, Kazufumi

Proceedings of 26th International Conference on Nuclear Engineering (ICONE-26) (Internet), 8 Pages, 2018/07

In order to investigate the basic neutronics characteristics of the accelerator-driven subcritical system (ADS), JAEA has a plan to construct a new critical assembly in the J-PARC project, Transmutation Physics Experimental Facility (TEF-P). This study aims to evaluate the natural cooling characteristics of TEF-P core which has large decay heat by minor actinide (MA) fuel, and to achieve a design that does not damage the core and the fuels during the failure of the core cooling system. In the evaluation of the TEF-P core temperature, empty rectangular lattice tube outer of the core has a significant effect on the heat transfer characteristics. The experiments by using the mockup device were performed to validate the heat transfer coefficient and experimental results were obtained. By using the obtained experimental results, the three-dimensional heat transfer analysis of TEF-P core were performed, and the maximum core temperature was obtained, 294$$^{circ}$$C. This result shows TEF-P core temperature would be less than 327$$^{circ}$$C that the design criterion of temperature.

Journal Articles

J-PARC Transmutation Experimental Facility Program

Maekawa, Fujio; Transmutation Expeimental Facility Design Team

Plasma and Fusion Research (Internet), 13(Sp.1), p.2505045_1 - 2505045_4, 2018/05

The partitioning and transmutation (P-T) technology has promising potential for volume reduction and mitigation of degree of harmfulness of high-level radioactive waste. JAEA is promoting development of the P-T technology by using an accelerator driven system (ADS). To facilitate the development, we have a plan to construct the Transmutation Experimental Facility (TEF) as one of experimental facilities of J-PARC (Japan Proton Accelerator Research Complex). TEF consists of two facilities: the ADS Target Test Facility (TEF-T) and the Transmutation Physics Experimental Facility (TEF-P). Recent progress in design and R&D efforts toward construction of J-PARC TEF will be presented.

200 (Records 1-20 displayed on this page)